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Dear Editor,

The increasing availability of digital health 
information has enabled patients to access 
their pathology reports prior to clinical con-
sultation, a phenomenon that has markedly 
amplified what is described in the literature 
as “waiting-time anxiety”.1,2 In contempo-
rary practice, patients increasingly rely on 
Large Language Models (LLMs) rather than 
conventional search engines to decipher 
complex medical terminology.2-5 However, it 
remains uncertain how accurately and em-
pathetically these models convey nuanced 
pathological concepts—particularly within 
“grey-zone” diagnoses such as Endometrial 
Intraepithelial Neoplasia (EIN), which can-
not be classified as strictly benign or ma-
lignant—as well as how they communicate 
potential malignancy.1-3,6 In this letter, we 
present a quantitative evaluation of the per-

formance of three current LLMs across a se-
ries of gynecologic pathology scenarios.

In our study, we generated four synthetic 
pathology reports designed to represent a 
clinically relevant spectrum: benign (cellular 
leiomyoma), premalignant (endometrial in-
traepithelial neoplasia, EIN), indeterminate 
(atypical squamous cells of undetermined 
significance, ASC-US), and malignant (endo-
metrioid adenocarcinoma) (Table 1). Three 
contemporary LLMs—Claude Sonnet 4.5, 
ChatGPT 5, and Gemini 3—were instructed 
to explain these reports to a persona defined 
as “a worried 45-year-old patient with no 
medical background.” The resulting outputs 
were assessed using the Ateşman Readabil-
ity Index, NRC Emotion Analysis, and a jar-
gon-density metric.7,8 The language of the 
study was Turkish. For readability assess-
ment, the Ateşman Readability Index, which 

Case 
No.

Clinical Category Pathology Report Text (Model Input)1

Case 1 Benign (Cellular Leiomyoma) Gross Description: Nodular tissue fragment measuring 8 × 6 × 5 cm, with a beige–white cut surface 
containing focal cystic areas.

Microscopic Description: Sections show intersecting fascicles of spindle-shaped smooth muscle cell 
bundles. Focal areas demonstrate edema, hyaline degeneration, and cystic change. Although mild 
increases in cellularity are noted in some regions, cytologic atypia is not prominent. No necrosis is 
identified. Mitotic activity is fewer than 1 per 10 HPF.

Diagnosis: Cellular Leiomyoma, Uterus (Myomectomy Specimen).

Case 2 Premalignant (EIN) Specimen: Endometrial Curettage.

Microscopic Description: Examination of the entire specimen reveals increased glandular density 
with a gland-to-stroma ratio exceeding 1:1. Glands exhibit branching and crowding. Cytologic atypia 
is present, characterized by nuclear rounding, chromatin coarsening, and nucleolar prominence. 
The atypical glands are clearly distinguishable from the background endometrium. No evidence of 
invasion (myometrial involvement) is identified.

Diagnosis: Findings Consistent with Endometrial Intraepithelial Neoplasia (EIN).

Case 3 Indeterminate (ASC-US) Specimen: Cervical Smear.

Microscopic Description: The background contains polymorphonuclear leukocytes and Döderlein 
bacilli. Superficial and intermediate squamous epithelial cells are present. Some squamous cells 
show nuclear enlargement (mildly increased nuclear-to-cytoplasmic ratio) and irregular nuclear 
contours; however, these findings are insufficient in quantity and quality to support a diagnosis of 
intraepithelial lesion (LSIL/HSIL). No cells suspicious for malignancy are identified.

Diagnosis: Atypical Squamous Cells of Undetermined Significance (ASC-US).

Case 4 Malignant (Adenocarcinoma) Specimen: Probe Curettage.

Microscopic Description: Sections lack normal endometrial stroma. Instead, the tissue is replaced 
by back-to-back, cribriform, and complexly branching atypical glandular structures occupying the 
entire field. The neoplastic cells show marked nuclear pleomorphism, loss of polarity, and increased 
mitotic activity. A desmoplastic stromal reaction is present.

Diagnosis: Endometrioid-Type Adenocarcinoma, FIGO Grade 1.
HPF: High-power field, EIN: Endometrial intraepithelial neoplasia, LSIL: Low-grade squamous intraepithelial lesion, HSIL: High-grade squamous 
intraepithelial lesion, ASC-US: Atypical squamous cells of undetermined significance, FIGO: International Federation of Gynecology and Obstetrics, 
1 The content has been translated and adapted to comply with the journal’s formatting and terminology guidelines.

Table 1. Synthetic Gynecologic Pathology Reports Used as Model Inputs
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is specifically designed for and adapted to Turkish morpholo-
gy, was employed. For sentiment analysis, the validated Turk-
ish translation of the NRC Word-Emotion Association Lexicon 
(Saif Mohammad’s NRC Word-Emotion Association Lexicon), 
accessible via the ‘syuzhet’ R package, was utilized.9

Our analyses revealed that none of the models adopted a stan-
dardized approach to patient education; instead, each demon-
strated a distinct communicative profile (Table 2). Gemini 3 
generated the longest and most detailed explanations (mean: 
510 words) and incorporated the highest number of empathy 
markers (n=14), making it the model that conveyed the stron-
gest empathetic intent (Figure 1).. However, its responses were 
heavily laden with technical terminology, resulting in marked-
ly poor readability (mean Ateşman score: –99.9).

Conversely, Claude Sonnet 4.5 delivered the most balanced per-
formance, offering concise yet adequately informative expla-
nations (mean: 248 words). It achieved the highest readability 
scores in benign scenarios and, notably, eliminated potentially 
confusing terminology—such as “squamous” or “atypia”—in 
the ASC-US case, producing a fully jargon-free explanation 
(0.00% jargon density). In the EIN scenario, its use of the meta-
phor “This is not a red light but a yellow one” to describe diag-
nostic uncertainty was identified as an exemplary strategy for 
reducing patient anxiety.

Although ChatGPT 5 demonstrated a high degree of techni-

cal accuracy, it consistently underperformed in the domain 
of “emotional intelligence.” In three of the four scenarios, the 
model produced responses entirely devoid of empathy markers. 
More importantly, in the malignant scenario, its use of starkly 
negative language failed to incorporate the essential buffering 
and softening strategies emphasized in established “breaking 
bad news” protocols.

Taken together, our findings suggest that these three models 
assume distinct functional roles from the patient’s perspective: 
Gemini 3 resembles an “Academic Instructor” that appeals to 
detail-oriented users; ChatGPT 5 functions more as a detached 
“Technical Glossary”; and Claude Sonnet 4.5 operates as an 
“Empathic Clinician” with a focus on anxiety mitigation. Ul-
timately, our results illustrate the diverse communicative pro-
files patients may encounter when independently consulting 
these tools. Clinicians’ awareness of these varying “AI commu-
nication styles” is critical—not only for correcting unrealistic 
patient expectations but also for managing secondary anxiety 
that may arise from digital information overload.
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Table 2. Quantitative Comparison of LLM Outputs Across Four Gynecologic Pathology Scenarios

Figure 1. Sentiment Load of Model Responses (NRC Sentiment Score).
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reflect negatively valenced or alarming wording. The distribution across the four clinical scenarios 
(Benign, EIN, ASC-US, Malignant) illustrates substantial variation in emotional tone between mod-
els.
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